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SUMMARY

This paper considers a method of lines stability analysis for �nite di�erence discretizations of a recently
published Boussinesq method for the study of highly non-linear and extremely dispersive water waves.
The analysis demonstrates the near-equivalence of classical linear Fourier (von Neumann) techniques
with matrix-based methods for formulations in both one and two horizontal dimensions. The matrix-
based method is also extended to show the local de-stabilizing e�ects of the non-linear terms, as well as
the stabilizing e�ects of numerical dissipation. A comparison of the relative stability of rotational and
irrotational formulations in two horizontal dimensions provides evidence that the irrotational formulation
has signi�cantly better stability properties when the deep-water non-linearity is high, particularly on
re�ned grids. Computation of matrix pseudospectra shows that the system is only moderately non-
normal, suggesting that the eigenvalues are likely suitable for analysis purposes. Numerical experiments
demonstrate excellent agreement with the linear analysis, and good qualitative agreement with the local
non-linear analysis. The various methods of analysis combine to provide signi�cant insight into the
numerical behaviour of this rather complicated system of non-linear PDEs. Copyright ? 2004 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

This paper considers a method of lines stability analysis for the recently published Boussinesq
formulation of References [1, 2] for the study of highly non-linear and extremely dispersive
water waves. This formulation combines exact representations of the kinematic and dynamic
free surface conditions with truncated series expansion solutions (about an arbitrary vertical
z-level, ẑ) of the Laplace equation and the kinematic bottom condition. Through the combined
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use of Pad�e-enhanced expansions, along with the retainment of the vertical velocity w as an
unknown, the resulting formulation has been shown in References [1, 2] to provide accurate
linear and non-linear qualities up to (wavenumber times depth) kh≈ 25, and accurate velocity
pro�les up to kh≈ 12—for the �rst time removing any practical limitations on the relative
water depth conventionally associated with Boussinesq-type approximations. A number of
e�cient numerical solution techniques for this system can be found in Reference [3], however
issues concerning the numerical stability of such solutions have not yet been addressed, which
is the aim here.
Herein, we consider the stability of a number of �nite di�erence discretizations of the pre-

viously noted high-order Boussinesq formulation. The methods used include a classical linear
Fourier (von Neumann) analysis in a single horizontal dimension, as well as a matrix-based
method in two horizontal dimensions (for both rotational and irrotational formulations), with
all of the analyses providing similar results. While the rotational and irrotational systems
exhibit similar linear properties, experience has shown that their non-linear behaviour can
be quite di�erent. We therefore extend the matrix-based method to include the temporally
local e�ects of the non-linear terms. As will be demonstrated, the addition of the non-linear
terms tends to de-stabilize the resulting eigenvalue distributions, while numerical dissipation is
demonstrated to have a stabilizing e�ect. A comparison of the two formulations provides clear
evidence that the irrotational formulation has signi�cantly better stability properties in highly
non-linear, deep-water situations, consistent with observations. Computation of matrix pseu-
dospectra also demonstrates that the system is only moderately non-normal (with increased
eigenvalue sensitivity for the rotational formulation), giving con�dence that the eigenvalues
reasonably characterize the discrete systems. To con�rm the results from the analysis, a series
of numerical experiments are conducted using explicit fourth-order, four stage Runge–Kutta
time integration. The results demonstrate excellent quantitative agreement with the linear anal-
yses, and good qualitative agreement with the local non-linear analysis. This work serves as
an example of the combined use of many widely applicable analysis techniques, with each
providing signi�cant insight into the numerical behaviour of this complicated system. This
analysis has proven essential in obtaining convergent numerical solutions for this important
system of non-linear partial di�erential equations (PDEs).
The outline of this paper is as follows. The Boussinesq formulation is outlined in Section 2.

The method of lines approach for numerical stability is brie�y described in Section 3. In
Section 4 a classical linear Fourier (von Neumann) stability analysis is undertaken in a single
horizontal dimension for two separate sets of �nite di�erence approximations. An alternative
matrix-based linear stability analysis is used in Section 5 in two horizontal dimensions, which
is further extended to include the temporally local e�ects of the non-linear terms in Section 6.
This section also demonstrates the e�ects of numerical dissipation on the system, and includes
a comparison of rotational and irrotational formulations. Analysis of matrix pseudospectra is
provided in Section 7. A series of numerical experiments with both the linear and non-linear
models is detailed in Section 8. Conclusions are drawn in Section 9.

2. THE BOUSSINESQ FORMULATION

Consider the �ow of an incompressible, inviscid �uid with a free surface. A Cartesian co-
ordinate system is adopted, with the x- and y-axis located on the still-water plane, and with the
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z-axis pointing vertically upwards. The �uid domain is bounded by the sea bed at z= −h(x),
with x= 〈x; y〉, and the free surface at z= �(x; t), where t is time. Water wave formulations
commonly include exact representations of the non-linear free surface boundary conditions,
expressed in terms of velocity variables at the free surface (see e.g. References [1, 2, 4]). This
leads to the following expressions for the kinematic and dynamic free surface conditions (in
two horizontal dimensions):
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where

Ũ= 〈Ũ ; Ṽ 〉= ũ+ w̃∇� (4)

Here ũ= 〈ũ; ṽ〉 and w̃ are the horizontal and vertical velocities directly on the free surface (i.e.
at z= �), g=9:81m=s2 is the gravitational acceleration, and ∇= 〈@=@x; @=@y〉 is the horizontal
gradient operator. Note that di�usive terms with di�usion coe�cient D have been added to
each of the free surface conditions. These will be used in Sections 6–8 to investigate the
e�ects of numerical dissipation. By inspection of (1)–(4) it can be seen that evolving � and
Ũ forward in time requires a means of computing the associated w̃, subject to the Laplace
equation and the kinematic bottom condition

w +∇h · u=0; z= − h (5)

This can be expressed quite generally as

w̃=f(�; Ũ) (6)

Most solutions to the exact water wave problem can be expressed in this form, with di�erent
approximations for (6). In the present analysis we focus on the highly accurate Boussinesq-
type method described in detail in References [1, 2] (see also Reference [5]). In this formu-
lation the vertical distribution of �uid velocity is approximated by

u(x; z; t) = (1− �2∇2 + �4∇4)û∗(x; t) + ((z − ẑ)∇ − �3∇3 + �5∇5)ŵ∗(x; t) (7)

w(x; z; t) = (1− �2∇2 + �4∇4)ŵ∗(x; t)− ((z − ẑ)∇ − �3∇3 + �5∇5)û∗(x; t) (8)
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In (7) and (8) the quantities û∗ and ŵ∗ are pseudo-velocity variables at an arbitrary vertical
expansion point ẑ, which have been introduced to allow Pad�e enhancement of the Taylor
series operators. Optimal velocity distributions are obtained near ẑ= −h=2, and we adopt this
value throughout. Note that this formulation di�ers slightly from Reference [1] in that (7)
and (8) are applied throughout the �uid domain. We emphasize that throughout this paper
the interpretation of the power of ∇ depends on whether this operator is acting on a scalar
or a vector, and in this context the following set of rules should be obeyed (see Reference
[6, Chapter 5])

∇2nu = ∇(∇2n−2(∇ · u)); ∇2n+1u=∇2n(∇ · u)
∇2nw = ∇2nw; ∇2n+1w=∇(∇2nw)

Inserting (7) and (8) into (5) and neglecting the bottom slope gives the following �at-
bottom expression of the kinematic bottom condition, which relates the pseudo-velocity vari-
ables û∗ and ŵ∗ to each other(

1− 4
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where �=(h + ẑ). It is straight-forward to include the variable depth terms (see References
[1–3, 7]), however they will not be included in the present work. Combining (10) with (7)
applied at z= �, while also invoking (4) gives a 3× 3 system that can be solved for û∗ and
ŵ∗ in terms of Ũ and �. The resulting system of PDEs is given in matrix form as


A11 − �xB11 A2 − �xB12 B11 + �xA1
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Here the subscripts x and y denote partial di�erentiation. The system contains a number of
di�erential operators, which can be found in Appendix A (see also Reference [3]). For now
it is su�cient to mention that each operator contains up to either fourth- or �fth-order mixed
partial derivatives. This system of operators shall henceforth be referred to as A, and upon
discretization this system shall be referred to as Ax= b. Fuhrman and Bingham [3] have also
shown that under the assumption of potential (irrotational) �ow such that

@u
@y

− @v
@x
=0 (12)

the system simpli�es slightly to

A=



A1 − �xB11 −�xB12 B11 + �xA1

−�yB11 A1 − �yB12 B12 + �yA1

A01 A02 B0


 (13)

We stress that (12) is a single component of the vorticity vector, and that the other ele-
ments (involving z-derivatives) have already been eliminated via the expansion of the velocity
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potential in the z-direction in the derivation process. Formulations using A stemming from
(11) and (13) will both be considered in this work.
Having solved for the pseudo-velocities û∗ and ŵ∗ from (11) or (13), w̃ can be computed

from (8) applied at z= �. This can be equivalently expressed in terms of the previously
introduced operators as

w̃=A1ŵ∗ −B11û∗ −B12v̂∗ (14)

which closes the problem.

3. STABILITY OF THE METHOD OF LINES

A method of lines approach allows for separate consideration of the time integration scheme
and the spatial discretization. This has the advantage that stability criterion for any number
of time stepping schemes can be obtained simultaneously. The justi�cation is widely known
and can be explained by considering a general system of linear di�erential equations having
the form

@y
@t
=Jy (15)

where y is a vector of time stepping variables, and J is the linear Jacobian matrix. Substi-
tuting the spectral factorization J=V�V−1 (where V is a matrix whose columns contain the
eigenvectors of J, and � is a diagonal matrix of corresponding eigenvalues �i) into (15)
leads directly to @y=@t=V�V−1y. Multiplying both sides by V−1 and considering that V
is time independent gives @=@t(V−1y)=�(V−1y). Finally, de�ning a new variable z=V−1y,
the system becomes @z=@t=�z i.e. original system (15) can identically be considered as a
number of independent scalar linear ordinary di�erential equations of the form

@zi
@t
= �izi (16)

This diagonalized system can be interpreted as a representation of the original system (15) in
the basis of eigenvectors of J [8]. As a result of this diagonalization the semi-discrete system
can be analysed for stability based on the eigenvalues of J alone.
By considering a single scalar linear test equation of form (16), it can likewise be shown

(see e.g. References [8–12]) that for a given time stepping scheme a region of absolute
stability can be constructed—often simply called its stability region. As a necessary condition
for stability, all eigenvalues of J, when ampli�ed by the time step �t, must lie within the
stability region of the respective time stepping scheme. Stability regions for numerous popular
time stepping schemes are commonplace, and can be found e.g. in References [9–12]. For
brevity they are not re-plotted here.
It is easy to show that a centrally discretized (linear) hyperbolic system will result in a

Jacobian matrix having purely imaginary eigenvalues (this is demonstrated for our particular
system in Sections 4 and 5). By inspection of various linear stability regions it can im-
mediately be seen that such a scheme will only be conditionally stable under certain time
stepping schemes i.e. those whose stability region contains some portion of the imaginary
axis. As a demonstration of a conditionally stable scheme which works well in practice we
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will consider the classical explicit fourth-order, four stage Runge–Kutta method throughout
this paper, though certainly more advanced time stepping methods are available (see e.g.
References [13, 14], and the recent comparison in Reference [15]). For completeness, the sta-
bility region for this method contains the imaginary interval (−2.8284i,2.8284i) and the real
interval (−2:7853; 0). For a more complete discussion on the suitability of numerous popular
time stepping schemes for systems of this type see Reference [12, p. 209]. We stress that
the analysis herein can easily be applied to any number of time integration methods (both
explicit and implicit), simply by considering the eigenvalue spectra in the following sections
with the stability region of interest.

4. LINEAR FOURIER ANALYSIS

The system of PDEs in the Boussinesq formulation will now be considered in its simplest form
i.e. considering linear wave propagation in a single horizontal dimension on a �at bottom.
The linearized kinematic and dynamic free surface conditions, respectively, read

@�
@t
=w0;

@u0
@t
= − g

@�
@x

(17)

Here u0 and w0 are velocities at the still water level z=0 in the x- and z-directions, respec-
tively. Similar to Section 2, w0 is found via a solution of the implicit (�at-bottom) relationship[

A1 B11

A01 B0

][
û∗

ŵ∗

]
=

[
u0

0

]
(18)

combined with the expression

w0 =A1ŵ∗ −B11û∗ (19)

The operators in (18) and (19) are simply one-dimensional representations of those in
Appendix A, and contain up to �fth-order partial derivatives in x. Note that in this lin-
earized form, each operator arises from (7) and (8) applied at z=0. It can be seen that û∗

and ŵ∗ can be eliminated by inserting the solution of (18) directly into (19), which gives an
expression for w0 in terms of u0

w0 =
(A1A01 +B0B11)u0
A01B11 −A1B0

(20)

The Fourier (von Neumann) analysis begins by �rstly considering each di�erential operator in
discrete form, as stability is purely a property of the discretized equations. In this analysis we
consider two centred spatial discretizations. These are the use of second-order �nite-di�erence
approximations for each derivative, as well as the use of high-order seven-point approximations
for each derivative (order ranging from two to six). Through further substitution of individual
Fourier components

�( j)⇒ ��eij�; u0( j)⇒ �u0eij� (21)
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Figure 1. Non-dimensionalized maximum eigenvalues as a function of kNh from the Fourier analysis in
a single horizontal dimension. The top and bottom lines correspond to using high-order (seven-point)

and second-order �nite di�erence approximations, respectively.

(where j is the grid point, and �=2�=N , with N the number of grid points per wavelength)
and by inserting (20) into w0 in (17) the system can be transformed to a semi-discrete form

@
@t

[
��

�u0

]
=

[
0 J12

J21 0

][
��

�u0

]
(22)

Note that in this form the time stepping variables have changed from � and u0 to their respec-
tive Fourier amplitudes �� and �u0. It should also be mentioned that the insertion of the Fourier
components (21) involves the assumption of periodic boundary conditions. This is often in-
terpreted simply as being applicable to the modelled regions which are su�ciently far from
the boundaries such that their e�ects are minimal [11]. After invoking the Eulerian identity
ei�= cos �+i sin �, it can be shown that J21 = − ig sin �=�x under discretization with second-
order �nite di�erence approximations and J21 = −ig (3=2 sin �−3=10 sin(2�)+sin(3�)=30)=�x
under discretization with high-order (seven-point) �nite di�erence approximations. These ex-
pressions are simply Fourier space representations of the discrete −g@=@x operator. Under
both discretizations the representation of J12 is extremely long and will not be given here
(it is in fact the Fourier space representation of the discretized factor for u0 in (20)). Given
the complexity of this term, the analysis is only practical with a symbolic manipulator (the
current analysis has been performed using MathematicaTM). Note that (22) is precisely of
form (15), and thus it is the eigenvalues of this matrix which will govern the linear stabil-
ity. In the current analysis only integer values for N are considered, which has been found
to give reasonable results. As suggested earlier, the eigenvalues are indeed purely imaginary
and the maximum computed values are given (non-dimensionalized) in Figure 1 for both
discretizations for a wide range of kNh, where kN =�=�x is the Nyquist wave number. The
eigenvalues have been non-dimensionalized using the celerity of the Nyquist mode cN, which
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is computed using the embedded linear dispersion relation given in References [1, 2] as
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Note that the y-axis of this �gure could identically be replaced with �max=!N, where !N is
the angular frequency of the Nyquist mode. This plot is given in terms of kN (rather than
e.g. just �x), to allow for a more direct comparison with the matrix-based analysis (in two
horizontal dimensions) in Section 5.
From the Fourier analysis it has been found that the maximum eigenvalue generally occurs

with �=�=2 (i.e. a mode having four grid points per wavelength, or twice the Nyquist
wavelength, thus kcritical = kN=2). This has been found to be generally true under discretization
with second-order �nite di�erence approximations, and true for kNh¡100 with high-order
�nite di�erence approximations. For kNh¿100 under the high-order discretization the critical
mode shifts to �=2�=3 i.e. one having three grid points per wavelength. The highest frequency
(Nyquist) mode actually results in a zero eigenvalue, and is thus always linearly stable under
these discretizations (this can readily be seen e.g. by inserting �=� into the previously given
expressions for J21). In general it is seen that the high-order spatial discretization results
in larger eigenvalues, and will consequently have more restrictive stability properties. These
di�erences are more dramatic in very shallow water, and become less pronounced (percentage-
wise) as kNh increases, at least up to kNh≈ 100. We stress that as shown in Reference [3],
this does not necessarily result in greater overall e�ciency, as the use of the higher-order
�nite di�erence approximations can allow for signi�cant reductions in the number of grid
points required for a desired accuracy.
Upon closer examination of Figure 1 some distinct regions can be observed. With kNh¡1

it is seen that the non-dimensionalized eigenvalue �attens, corresponding to the point where
the most critical mode becomes non-dispersive. Within the range 1¡kNh¡2� a transition
region is apparent, as the critical mode gradually moves from shallow water to the practical
deep-water limit. In the range 2�¡kNh¡40 the curves again level, as the celerity of the
critical mode becomes insensitive to changes in the depth. Finally, at kNh¿40 the curves
again begin to rise, corresponding roughly to the point where the linear dispersive properties
of the critical mode begin to fail with respect to linear wave theory (cN becomes signi�cantly
underestimated). Note that in most practical applications kNh¿� i.e. at least the highest
resolved frequency mode is beyond the practical deep-water limit. Practical applications in
intermediate to very deep water are typically in the range 10¡kNh¡500.
The maximum time step �tmax that can be taken due to stability constraints is found as

follows: Given a spatial discretization, kN can readily be computed, as can cN from (23).
With kN and cN known, the maximum eigenvalue �max can be obtained from Figure 1. The
(hyperbolic) Courant number is then

rh= �max�t (25)
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Thus, the maximum Courant number rh;max allowable for stability is simply the point where
the stability region of the time stepping scheme of interest crosses the imaginary axis (note
that certain implicit schemes will therefore be linearly unconditionally stable). Hence, �tmax
can easily be computed from (25) i.e. �tmax = rh;max=�max. From this section linear stability
criterion can be established for both �nite di�erence discretizations considered in combination
with any number of time stepping methods.

5. LINEAR MATRIX-BASED ANALYSIS

As an alternative to the Fourier techniques used in Section 4 an entirely numerical, matrix-
based approach can be adopted—the actual Jacobian matrix J can be constructed and its
eigenvalues computed directly. This approach has the advantage of being very general e.g.
any e�ects from boundary conditions are inherently included in the analysis. It is even fairly
straight-forward to extend the analysis to include the e�ects of the non-linear terms (at
least locally), which is the ultimate motivation here. Note that for the remainder of this
paper combined Dirichlet and Neumann boundary conditions are used to create closed bound-
aries on a rectangular domain, as in Reference [3]. Speci�cally, this corresponds to impos-
ing u=0; @v=@x=0; @w=@x = 0, and @�=@x = 0 along x-boundaries; and @u=@y = 0; v = 0,
@w=@y=0, and @�=@y = 0 along y-boundaries. These conditions are imposed simply by re-
�ecting the �nite di�erence coe�cients evenly for Neumann boundary conditions and oddly
for Dirichlet boundary conditions. Although the approach in this section is completely numer-
ical, for convenience the di�erential operators are given in continuous form in much of what
follows.
To begin the linearized �at-bottom system in two horizontal dimensions will be considered.

The free surface conditions now consist of (17) combined with

@v0
@t
= − g

@�
@y

(26)

To form the Jacobian matrix J it is necessary to express the linearized free surface equations
explicitly in terms of the time stepping variables �; u0, and v0. With this system, however,
w0 is normally found via an implicit relationship i.e. a solution of the system Ax= b, where
xT = [û∗; v̂∗; ŵ∗] and bT = [u0; v0; 0], combined with

w0 =A1ŵ∗ −B11û∗ −B12v̂∗ (27)

which is simply the linearized form of (14). This can easily be converted into an explicit
expression, however, simply by taking Z=A−1, which leads obviously to x=Zb. Note that
here Z is a dense matrix. Considering Z in block form, this operation can be written as



û∗

v̂∗

ŵ∗


=



Z11 Z12 Z13
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
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0


 (28)
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Inserting (28) into (27) gives the following explicit expression for the determination of w0
from u0 and v0

w0 =A1Z31u0 +A1Z32v0 −B11Z11u0 −B11Z12v0 −B12Z21u0 −B12Z22v0 (29)

Thus, the linearized system can now indeed be written in a semi-discrete form as

@
@t




�

u0

v0


=




0 @
@u0

(
@�
@t

)
@

@v0

(
@�
@t
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−g @

@x 0 0

−g @
@y 0 0


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


�

u0

v0


 (30)

where substituting (29) into w0 from (17) leads to

@
@u0

(
@�
@t

)
=A1Z31 −B11Z11 −B12Z21 (31)

@
@v0

(
@�
@t

)
=A1Z32 −B11Z12 −B12Z22 (32)

Note that the 3×3 system in (30) (when discretized) is the Jacobian matrix J for this system,
and in this linearized form is time constant.

5.1. Comparison of rotational and irrotational formulations

As shown in Section 2 (see also Reference [3]), this Boussinesq method can be written in
either rotational or irrotational form in two horizontal dimensions, and both will be considered
here. The analyses are quite similar, however, with the only di�erence being in the form of the
matrix A. Figure 2 plots computed maximum (non-dimensionalized) eigenvalues (computed
using the MATLABJ eig function) for both the rotational and irrotational formulations under all
four �nite di�erence discretizations considered with the Boussinesq model in Reference [3].
These include the use of all second-order �nite di�erence approximations, as well as stencils
containing 25, 37, and 49 points, where each approximation is allowed to have the maximum
formal accuracy possible on each stencil. All computations use a 21× 21 computational grid
(giving a Jacobian matrix of dimension 21×21×3=1323), which has been found in practice
to be su�ciently large for the purposes of this analysis. This grid provides three full stencil
widths in both horizontal directions, and comparisons with systems arising from larger grids
have been found to result in essentially the same spread of eigenvalues. In two horizontal
dimensions kN is the modulus of the Nyquist wave number vector kN = 〈�=�x; �=�y〉,
de�ned as

kN =

√( �
�x

)2
+
(

�
�y

)2
(33)

Note that this two-dimensional modulus will tend to be larger than in a single dimension
for a given spatial discretization (for example, with �x=�y the two-dimensional kN will
always be larger than that from a single horizontal dimension with equivalent �x by a factor√
2). Again the high-order �nite di�erence approximations are somewhat more restrictive
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Figure 2. Non-dimensionalized maximum eigenvalues for the linear system (in two horizontal
dimensions) as a function of kNh for (a) the rotational formulation and (b) the irrotational formulation.

(i.e. result in larger eigenvalues) than are second-order �nite di�erence approximations. The
di�erences between the other �nite di�erence stencils, as well as in the two formulations
are relatively minor, with slight di�erences becoming apparent at higher values of kNh. The
resulting �gures (especially for the irrotational formulation) are remarkably similar to Figure 1,
as the two-dimensionality and the closed boundary conditions seem to play a relatively minor
role as far as the overall numerical stability is concerned. Values for the eigenvalues (and
thus for the determination of rh) will be taken directly from Figure 2 for the remainder of
this work.
As examples from the linearized system Plate 1 shows the eigenvalue distributions for three

di�erent values of rh arising from a rotational system using the 37-point �nite di�erence
stencil with kNh=20�. From these plots it can once again be seen that the eigenvalues are
indeed purely imaginary, as discussed previously in Section 4. For demonstration purposes,
the stability region from the explicit fourth-order Runge–Kutta time stepping scheme is shown
(likewise on all remaining �gures), and the maximum (and minimum) eigenvalues can be seen
to lie on the curve at the limiting rh=2:8284. This stability limit is also con�rmed using the
numerical model in Section 8.1.

6. LOCAL NON-LINEAR MATRIX-BASED ANALYSIS

While numerical experiments con�rm the previous �ndings for the linearized system, expe-
rience with the non-linear model has shown that in the absence of numerical dissipation,
simulations are generally unstable. Thus the linear analyses, perhaps unsurprisingly, do not
give a complete account of the non-linear behaviour. In other words, the linear constraints
are no doubt necessary, but by no means are they su�cient for the general stability of
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non-linear simulations. In an attempt to gain insight into this behaviour, the matrix-based
stability analysis from Section 5 is extended to include the non-linear terms in this section.
Consider the non-linear formulation outlined in Section 2. Recall also that di�usive terms

with di�usion coe�cient D have been added to each of the free surface equations (1)–(3).
This serves as a convenient means of adding numerical dissipation to the system, the e�ect of
which will be demonstrated in Section 6.3. These di�usive terms also necessitate an additional
stability criterion based on the parabolic Courant number, de�ned here as

rp= �Dk2N�t (34)

This de�nition for rp is convenient, as it corresponds precisely to the (negative) real spread
of the linear eigenvalue spectrum. Calculations with the linearized system have shown that
reasonable values for the coe�cient � are 0.4053 and 0.6124 when using second-order and
higher-order �nite di�erence approximations, respectively. Note that when rp=0 the system
is free of any added dissipation.
For non-linear analysis purposes it is common to investigate the eigenvalues of the Jaco-

bian matrix using temporally local coe�cients. Hence, we inherently assume that the local be-
haviour of the system is modelled well by the variational equation @y=@t= @yn=@t+Jn(y−yn),
where n is the local time level. The 3× 3 Jacobian matrix J is now generally de�ned as

J=




@
@�

(
@�
@t

)
@
@Ũ
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@
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(
@Ũ
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@Ṽ

(
@Ũ
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@
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(
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@Ũ

(
@Ṽ
@t

)
@
@Ṽ

(
@Ṽ
@t

)


 (35)

The determination of the individual components of this matrix is rather complicated, and is
addressed in Appendix B. It should be stressed that such an extension of linear theory to a non-
linear setting is far from an exact practice, and due care should be taken in the interpretation
of the results. Adding to the complication, it is impossible to examine every possible physical
situation. Despite these drawbacks, it is often possible to demonstrate qualitative tendencies
using such a local analysis, and this is the aim here.
All results in this section use linear standing wave initial conditions on a �at bottom

with waveheight H and wavelength (in both x- and y-directions) L=1 m. This gives a
linear deep-water period T =0:6730 s. Each simulation uses �x=�y=L=20=0:05 m, and
�t=T=20=0:03365 s, and the results shown are from the 22nd time step (frozen in time),
which has been chosen arbitrarily to provide conditions roughly in mid-cycle. Computations
are again on a 21 × 21 grid, and use the 37-point �nite di�erence stencil. Results using the
other stencils, as well as at other time levels have been found to be qualitatively similar. All
results in this section will be given in terms of the dimensionless quantities kh (the relative
depth of the primary wave), either H=h or H=L (the shallow- or deep-water non-linearity,
respectively), and kNh (the spatial discretization). As reference values, the practical deep
water limit is conventionally kh=�, and upper limits for the respective non-linearities (before
wave breaking) are H=h≈ 0:8 and H=L≈ 0:14 in shallow and deep water. Experience has
shown that the rotational and irrotational formulations behave somewhat di�erently in cases
having signi�cant non-linearity, particularly in deep water where the irrotational formulation
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Plate 1. Eigenvalues of �tJ for the linear rotational formulation with kNh=20� and
(a) rh=1, (b) rh=2, and (c) rh=2:8284.
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Plate 2. Eigenvalues of �tJ with rh=1:5 for the rotational (top) and irrotational (bottom) for-
mulations with (a), (d) kh=�=5, H=h=0:7071, kNh=2�; (b), (e) kh=2�, H=L=0:05, kNh=20�;

and (c), (f) kh=2�, H=L=0:10, kNh=20�.
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Plate 3. Eigenvalues of �tJ with kh=2�, H=L=0:05, kNh=20�, rh=1:5, and D=0:002m=s2 for (a)
the rotational (rp=0:6338) and (b) the irrotational formulation (rp=0:6934).
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Plate 4. Eigenvalues of �tJ for the rotational (top) and irrotational (bottom) formulations with kh=4�,
H=L=0:12, kNh=40�, rh=1:5, and (a), (d) D=0m2=s; (b), (e) D=0:001m2=s (rp=0:3327, 0:3561);

(c) D=0:005 m2=s (rp=1:6636); and (f) D=5× 10−4 m2=s (rp=0:1780).
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Plate 5. Pseudospectra (rh=1:5) of �tJ for the (top) rotational and (bottom) irrotational for-
mulations for (a), (d) linear matrices with kNh=4�; (b), (e) non-linear matrices with kh=2�,
H=L=0:10, kNh=20�, D=0:002 m2=s (rp=0:6338; 0:6934); and (c), (f) non-linear matrices with
kh=4�, H=L=0:12, kNh=40�, D=0 m2=s. The values for the colorbars correspond to the

base-10 power of 	 i.e. 	=10−4; : : : ; 10−1.
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has been found to be much more stable. Both systems will therefore be analysed independently
in what follows.

6.1. The presence of non-linear instabilities

Plate 2 shows eigenvalue distributions from both the rotational and irrotational formulations
under a variety of physical situations (i.e. varying depth and non-linearity) with rh=1:5 and
rp=0 (i.e. no added dissipation). Here it is clearly seen that the addition of the non-linear
terms has produced scattered eigenvalues protruding into the right half of the complex plane,
indicating the presence of local exponentially growing modes. This suggests that under these
discretizations the system may indeed be susceptible to non-linear instabilities, which is in
fact the case in practice. This analysis indicates that in both formulations the strength of the
instabilities increases with non-linearity, with the rotational system exhibiting faster growth
of the locally unstable modes (i.e. eigenvalues farther away from the linear stability region)
in deep water. Note also that the imaginary spread of eigenvalues is somewhat greater than
would be expected from the linear analysis, and that this trend is ampli�ed as the non-linearity
is increased. This is particularly apparent in Plate 2, parts (a), (c) and (d), (f), which have
the strongest non-linearity (recall that the hyperbolic Courant number rh refers to the expected
imaginary spread of eigenvalues from the linear analysis). This trend is consistent with the
amplitude dispersion characteristics of non-linear waves—non-linear waves travel faster than
linear waves having the same wavelength and water depth.

6.2. The e�ect of numerical dissipation

The eigenvalue distributions shown in Plate 2 for the non-linear model indicate that simu-
lations are locally unstable. In practice, however, we �nd that the addition of minor levels
of numerical dissipation will generally stabilize the non-linear simulations. The e�ect of such
dissipation on the eigenvalue spectra is demonstrated in Plate 3, where now the di�usion
coe�cient has been increased to D=0:002 m2=s. These plots can be compared with Plate 2,
parts (b) and (e) with D=0 m2=s. Clearly (as should be expected) the di�usive terms tend
to move the eigenvalue distributions to the left half of the complex plane, stabilizing the
schemes (at least locally). The chosen value for D in Plate 3 is roughly the necessary value
to locally stabilize each of the distributions.
The use of similar dissipative interfaces is commonplace in the numerical modelling com-

munity, and is discussed e.g. in References [11, 16]. In general it is felt that the e�ects shown
in Plate 3 on the eigenvalue distributions are qualitatively representative for any number of
dissipative interfaces. Other methods for introducing numerical dissipation include Fischer-type
semi-discretization [17], which has been considered in the numerical analysis of an alternative
form of Boussinesq equations in Reference [18], as well as the application of Savitzky–Golay
smoothing �lters [19, 20], which have been used successfully in the current model e.g. in
References [1, 3, 21].

6.3. Comparison of rotational and irrotational formulations

As noted previously, rotational simulations having high deep-water non-linearity have been
found in practice to be much more di�cult to stabilize than those using the irrotational formu-
lation. This is especially true on re�ned grids i.e. where kNh is relatively large. In an attempt
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to provide insight into this observation Plate 4 shows eigenvalue distributions for both formu-
lations with kh=4�, kNh=40�, and H=L=0:12. Clearly, both simulations appear locally un-
stable in the absence of any numerical dissipation, as seen in Plate 4, parts (a) and (d), though
this is much less pronounced for the irrotational system (Plate 4(d)). Plates 4(b)–(c) and (e)
–(f) give quite dramatic evidence that the rotational system is much more di�cult to stabilize
in these highly non-linear, deep-water situations. Indeed, as shown in Plates 4(b)–(c), the
rotational formulation still retains some locally unstable eigenvalues at relatively high levels
of dissipation i.e. up to D=0:005m2=s. Closer (visual) inspection of the associated eigenvec-
tors has revealed that these modes seemingly contain somewhat lower frequencies, and thus
are not as easily damped by the di�usive terms. The irrotational formulation, on the other
hand, is locally stabilized under much lower values of D, as shown in Plates 4(e)–(f). This
analysis provides a possible explanation for these di�culties with the rotational formulation,
and shows at least locally that the irrotational formulation is much more receptive to dissipa-
tion. Based on this analysis (as well as experience) the irrotational formulation is seemingly
preferable in simulations having high deep-water non-linearity, so long as the formulation
is applicable. Remarkably, Plate 4(f), with H=L=0:12 and kh=4� shows that the necessary
value for the di�usion coe�cient in this example is roughly D=5× 10−4 m2=s—signi�cantly
less than the necessary value of 0:002 m2=s in Plate 3(b) with H=L=0:05 and kh=2�. This
suggests that the non-linear stability properties of the irrotational formulation actually improve
with increasing kNh!

7. ANALYSIS OF PSEUDOSPECTRA

In recent years the concept of the pseudospectra of a matrix has arisen as a tool to help
understand the behaviour of non-normal matrices (i.e. matrices whose eigenvectors do not
form an orthogonal basis). This is important, as cases having severe non-normality can result
in behaviour that is not always consistent with what is predicted by an analysis of eigenvalues
alone. If � is an eigenvalue of J, then ‖(�I− J)−1‖ is conventionally regarded to be in�nite.
This begs the question: What if ‖(�	I − J)−1‖, �	 �= � is �nite, but very large? This pattern
of thinking leads to the following de�nition for the pseudospectra of a matrix [22]:

�	(J)= {�	 ∈C : ‖(�	I − J)−1‖¿	−1} (36)

The pseudospectra of a matrix are thus useful in describing the sensitivity of the eigenval-
ues to minor perturbations in the original matrix. If a matrix is normal then its two-norm
	-pseudospectrum consists of closed balls of radius 	 surrounding the eigenvalues [23]. As
the non-normality increases, however, the pseudospectra may deviate far more signi�cantly
from the eigenvalues, sometimes by many orders of magnitudes. Pseudospectra have provided
valuable insight into numerous issues e.g. that of hydrodynamic stability [24–27]. Issues
concerning their computation can be found e.g. in References [28, 29]. For more detailed
discussions of pseudospectra as well as numerous examples see References [8, 22, 23, 29].
This issue is explored for the current system using the EigTool package for MATLABJ. A

detailed description of this package can be found in References [28, 29]. Pseudospectra from
a number of matrices for both rotational and irrotational formulations are shown in Plate 5.
From these plots it can be seen that these matrices are only moderately non-normal, which is
itself comforting and useful information. This can be seen e.g. by considering that the contours
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corresponding to 	=10−1 deviate from the original spread of eigenvalues typically by a length
of 100 =1, or roughly 10 times what would be expected for a normal matrix. Pseudospectra
from the linear models in quite deep water (Plates 5(a) and 5(d) with kNh=40�) show that
the eigenvalues from the rotational system are slightly more sensitive to perturbations than
from the irrotational formulation, deviating noticeably from the eigenvalues at much lower
values of 	. Interestingly, the problematic area in the (non-linear) rotational spectrum seems
to already be properly identi�ed in the linearized pseudospectrum in Plate 5(a). In practice
we do not observe deviations from the eigenvalue analysis with either system, suggesting
that the eigenvalues reasonably characterize the discrete systems at this moderate level of
non-normality. Plates 5(b) and (e) show pseudospectra arising from locally stabilized matri-
ces in moderately deep water (kh=2�, kNh=20�) with high non-linearity (H=L=0:10). The
di�erences between the two formulations are again not too severe, with the rotational formu-
lation having a slightly larger spread. Notably, while the eigenvalues from Plates 5(a)–(b)
and (d)–(e) lie within the stability region, the pseudospectra protrude to the right half of
the complex plane, at least for the larger values of 	. However, as the non-normality of the
systems in Plates 5(b) and (e) is roughly equivalent to that from Plates 5(a) and (d), we do
not expect signi�cant deviations from the eigenvalue analysis with these discretizations. More
dramatic di�erences become apparent when kNh is increased, as can be seen in a comparison
of Plates 5(c) and (f), with kNh=40�; kh=4�; H=L=0:12. As Plate 5(f) demonstrates, the
irrotational formulation exhibits virtually no dependence on increasing kNh, whereas the ro-
tational system (Plate 5(c)) demonstrates a signi�cant increase in its non-normality (the real
pseudospectral radius roughly doubles). This suggests that the non-normality of the rotational
formulation may play an increasing role in de-stabilizing highly non-linear deep-water sim-
ulations as the grid is re�ned. However, as shown in Section 6.3 (Plate 4), the eigenvalues
already suggest stability problems in these instances.

8. NUMERICAL EXPERIMENTS

The previous �ndings from both the linear and non-linear analyses will now be tested in a
series of numerical experiments. All experiments in this section use linear standing wave initial
conditions, and results are again presented in terms of the previously introduced dimensionless
quantities. The experiments use a 21× 21 grid, and consider a single wavelength L=1 m in
both x- and y-directions, with �x=�y=L=20=0:05 m. All simulations use the 37-point
�nite di�erence stencil combined with the explicit fourth-order, four-stage Runge–Kutta time
stepping scheme. Results from Figure 2 are again used for the determination of the hyperbolic
Courant number rh.

8.1. Linear experiments

Table I provides a summary of a series of experiments with the linear model for both rota-
tional and irrotational formulations. Simulations are deemed ‘stable’ after running 10 000 time
steps with no sign of instabilities. Recall that the necessary stability limits for this scheme are
rh¡2:8284 (corresponding to the imaginary limit) and rp¡2:7853 (corresponding the nega-
tive real limit), assuming the eigenvalues span either the imaginary or (negative) real axes
separately. This is controlled in these experiments through the choice of time step �t and
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Table I. Summary of numerical experiments with the linear model.

Rotational Irrotational

kNh rh rp S=U �t (s) D (m2=s) nu �t (s) D (m2=s) nu

2� 2.8 0 S 0.1304 0 — 0.1355 0 —
2� 2.9 0 U 0.1350 0 448 0.1403 0 456
20� 2.8 0 S 0.1223 0 — 0.1338 0 —
20� 2.9 0 U 0.1267 0 435 0.1386 0 430
40� 2.8 0 S 0.1284 0 — 0.1375 0 —
40� 2.9 0 U 0.1330 0 421 0.1424 0 420
20� 0.1 2.7 S 0.004369 0.1278 — 0.004780 0.1168 —
20� 0.1 2.9 U 0.004369 0.1373 461 0.004780 0.1255 461

Note: The column heading S=U refers to the simulation being either stable=unstable. The variable nu refers
to the time step where the simulations go unstable (taken here as when a NaN is detected).

di�usion coe�cient D i.e. when rh is varied rp=0, and when rp is varied rh is kept small.
Here it can clearly be seen that the numerical results match extremely well with the linear
stability criterion outlined previously in Sections 4 and 5 for both hyperbolic and parabolic
courant numbers. Simulations with the same unstable Courant numbers for both formulations
can in fact be seen to go unstable at approximately the same time. These models behave as
predicted by the analysis, and the results are not discussed further.

8.2. Non-linear experiments

Tables II and III provide results from a series of non-linear simulations, where the depth and
non-linearity are varied for both rotational and irrotational formulations, respectively. These
simulations use an unrestarted GMRES [30] algorithm for solutions of Ax= b (preconditioned
with the linearized matrix, as presented in Reference [3]), with a relative residual error tol-
erance r= ‖b−Ax‖2=‖b‖2 of 10−6. Simulations are deemed ‘stable’ after progressing 5000
time steps with no noticeable evidence of instabilities. For all of the non-linear experiments
rh=1:0 is used to prevent numerical dissipation from the time stepping scheme (at approxi-
mately this level lobes from the stability region extend to the right half of the complex plane,
e�ectively resulting in a dissipative scheme).
From these experiments it can be seen that the results match qualitatively with the local

non-linear analysis of Section 6. As predicted in Section 6.1, although linearly stable, the
simulations generally su�er from non-linear instabilities in the absence of numerical dissi-
pation. Consistent with Section 6.2 (see Plate 3), simulations with either formulation require
roughly the same level of dissipation for stabilization in cases with moderate deep-water non-
linearity (consider the cases with kh=2�, H=L=0:05). Consistent with Section 6.3, it is also
shown that the irrotational formulation is much easier to stabilize than is the rotational for-
mulation when the deep-water non-linearity is high, particularly with large kNh. For example,
the irrotational simulations with kNh=40�, kh=4� surprisingly require no added dissipation
to maintain stability, while similar rotational simulations quickly go unstable. The numerical
experiments also indicate that the rotational formulation is somewhat easier to stabilize in
shallow water (consider the results with kh=�=5). Note that these shallow-water simulations
are actually very non-linear, with H=h=0:7071. This di�erence is not as severe as in deep
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Table II. Summary of numerical experiments with the non-linear rotational model.

kNh kh H=L �t (s) D (m2=s) rp S=U nu

2� �=5 0.05 0.04655 0 0 U 2310
2� �=5 0.05 0.04655 10−6 2:25× 10−4 U 2440
2� �=5 0.05 0.04655 10−5 2:25× 10−3 S —
20� 2� 0.05 0.04369 0 0 U 2960
20� 2� 0.05 0.04369 10−5 2:11× 10−3 U 3620
20� 2� 0.05 0.04369 10−4 2:11× 10−2 S —
20� 2� 0.10 0.04369 0 0 U 510
20� 2� 0.10 0.04369 10−4 2:11× 10−2 U 980
20� 2� 0.10 0.04369 10−3 2:11× 10−1 S —
20� 2� 0.12 0.04369 0 0 U 360
20� 2� 0.12 0.04369 10−4 2:11× 10−2 U 560
20� 2� 0.12 0.04369 10−3 2:11× 10−1 S —
40� 4� 0.12 0.04587 0 0 U 230
40� 4� 0.12 0.04587 10−4 2:22× 10−2 U 570
40� 4� 0.12 0.04587 10−3 2:22× 10−1 S —

Note: All simulations use rh=1:0. The column headings are the same as used in Table I. Here the variable
nu refers to �rst time step where a solution of Ax= b exceeds 200 iterations.

Table III. Summary of numerical experiments with the non-linear irrotational model.

kNh kh H=L �t (s) D (m2)=s rp S=U nu

2� �=5 0.05 0.04838 0 0 U 1030
2� �=5 0.05 0.04838 10−5 2:34× 10−3 U 1180
2� �=5 0.05 0.04838 10−4 2:34× 10−2 S —
20� 2� 0.05 0.04780 0 0 U 2270
20� 2� 0.05 0.04780 10−5 2:31× 10−3 U 2520
20� 2� 0.05 0.04780 10−4 2:31× 10−2 S —
20� 2� 0.10 0.04780 0 0 U 1030
20� 2� 0.10 0.04780 10−5 2:31× 10−3 U 1100
20� 2� 0.10 0.04780 10−4 2:31× 10−2 S —
20� 2� 0.12 0.04780 0 0 U 460
20� 2� 0.12 0.04780 10−4 2:31× 10−2 U 830
20� 2� 0.12 0.04780 10−3 2:31× 10−1 S —
40� 4� 0.12 0.04909 0 0 S —

Note: All simulations use rh=1:0. The column headings are the same as used in Table I. Here the variable
nu refers to �rst time step where a solution of Ax= b exceeds 200 iterations.

water, however, and was not detected in the local analysis. Further investigation of Tables II
and III con�rms an important trend—the non-linear stability properties of the rotational for-
mulation deteriorate with increasing kNh, whereas for the irrotational formulation the stability
properties actually improve! This was also suggested in Section 6.3. This is quite signi�cant,
as many of the practical applications of this model involve highly non-linear waves in deep
water.
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It can be seen from the experiments that the necessary values for the di�usion coe�cient D
are typically O(10−5)–O(10−3)m2=s. These are often somewhat lower than the values O(10−4)
–O(10−3) m2=s that might be inferred from the local non-linear analysis in Section 6. This
discrepancy is likely, at least in part, due to the dissipative nature of these simulations. The
di�usive terms inevitably result in an energy loss, thus the waveheight (and correspondingly
the degree of non-linearity) continually decreases during a simulation. This occurs quite rapidly
e.g. with D=10−3 m2=s, e�ectively making it impossible to test the performance of high
non-linearity combined with larger di�usion coe�cients for an extended time period. This
discrepancy with the local non-linear analysis is not of great concern, given that the original
intent was to gain qualitative knowledge for this system. Note also that these necessary
values for D are one to three orders of magnitude larger than the kinematic viscosity of water

≈ 10−6m2=s. Thus, the numerical dissipation required for numerical stability is in most cases
signi�cantly greater than what might be included for purely physical reasons. The resulting
values for rp are in all cases signi�cantly lower (typically by orders of magnitude) than the
corresponding stability limit, perhaps making this limit of little practical signi�cance (at least
for this particular time stepping scheme).
The general numerical stability for this non-linear system is an extremely complicated issue,

and a full account has certainly not been presented here. These results should, however,
provide useful guidelines for future applications of the non-linear model for the general study
of water waves.

9. CONCLUSIONS

This paper investigates the numerical stability of method of lines discretizations of the high-
order Boussinesq formulation of References [1, 2] for the study of highly non-linear and
extremely dispersive water waves. It is shown through linear analyses that centred �nite dif-
ference schemes are conditionally stable for time stepping schemes whose stability regions
contain some portion of the imaginary axis. From the results presented here necessary stabil-
ity criterion can be established for numerous time integration schemes in combination with a
number of �nite di�erence spatial discretizations. Linear analyses using conventional Fourier
(von Neumann) techniques in a single horizontal dimension and matrix-based methods in two
horizontal dimensions (for both rotational and irrotational formulations) give very similar re-
sults, with both indicating that the high-order discretizations result in more restrictive stability
constraints than do second-order �nite di�erence approximations.
The matrix-based method is also extended to include the local e�ects of the non-linear

terms. The general de-stabilizing e�ects of these terms are demonstrated, as are the stabilizing
e�ects of numerical dissipation. The analysis provides clear evidence that the numerical model
becomes increasingly unstable as the non-linearity becomes stronger. Although the linear anal-
yses show only minor di�erences between the rotational and irrotational formulations, much
more dramatic di�erences are demonstrated in the local non-linear analysis. Speci�cally, it is
shown (locally) that the eigenvalues from the rotational system are much less receptive to
numerical dissipation than are those from the irrotational formulation when high non-linearity
is combined with large water depths and=or re�ned grids (i.e. large kNh). Alternatively, the
analysis suggests that the stability properties of the irrotational formulation actually improve
with increasing kNh. Computation of matrix pseudospectra shows that the system is generally
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only moderately non-normal, giving con�dence that the eigenvalues reasonably characterize
the discrete systems. Increased non-normality is, however, demonstrated for the rotational for-
mulation when high non-linearity is combined with large kNh, providing yet further evidence
of deteriorating stability properties for this formulation in these circumstances.
A series of numerical experiments demonstrates excellent agreement with the linear anal-

yses, and good qualitative agreement with the local non-linear analysis. These experiments
provide further insight, indicating that the rotational formulation has slightly better stability
properties in highly non-linear shallow-water situations. The experiments con�rm that the irro-
tational formulation has signi�cantly better stability properties in cases having high deep-water
non-linearity, particularly with large kNh. From this analysis it can con�dently be concluded
that the irrotational formulation is preferable from a stability standpoint in these circumstances.
The experiments also demonstrate that the non-linear stability properties of the irrotational
formulation improve with increasing kNh, consistent with the local non-linear analysis. These
conclusions are signi�cant, as many of the practical applications of this model involve highly
non-linear waves in deep water.
This work serves as an example of the combined use of many widely applicable numerical

analysis techniques, with each providing valuable insight into the numerical behaviour of
this complicated system of PDEs (including up to �fth-order spatial derivatives). Extension
beyond classical linear methods of analysis has proven essential for the understanding of this
system, as the behaviour of the non-linear model deviates signi�cantly from what might be
expected from a strictly linear analysis. This work has proven essential in obtaining convergent
numerical solutions for this important high-order system of non-linear PDEs.

APPENDIX A: DIFFERENTIAL OPERATORS

This section includes the various operators in the system of PDEs denoted herein as A. The
enhanced free surface operators from rotational (11) and irrotational (13) systems are
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with the � and � coe�cients in (9) applied at z= � for the non-linear system and at z=0
for the linearized system. The basic bottom operators are
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Note that the complete system of operators for both formulations (including variable bottom
terms) can be found in Reference [3].

APPENDIX B: THE JACOBIAN MATRIX

This appendix provides a complete description for the computation of the individual compo-
nents of the Jacobian matrix from (35), which is used in the local non-linear stability analysis
in Section 6. Direct di�erentiation of (1)–(3) as implied by the elements in (35) leads to
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@Ṽ

(B6)

@
@�

(
@Ṽ
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@
@y
+

(
1 +

(
@�
@x

)2
+
(
@�
@y

)2)(@w̃
@y

@w̃
@Ṽ
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where (similar to Section 5)

w̃ =A1Z31Ũ +A1Z32Ṽ −B11Z11Ũ −B11Z12Ṽ −B12Z21Ũ −B12Z22Ṽ (B10)
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Note that while � is included (via the operators Ai ; B i, and Zi) in the local determination
for w̃ in (B10), there are formally @w̃=@� terms missing in (B1), (B4), and (B7). The neglect
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of these terms is justi�ed by the weak dependence of the operators on � (particularly in deep
water), and by the extreme complexity of doing otherwise.
Finally, it is again implied that to form the actual Jacobian matrix J the continuous operators

speci�ed in this appendix must be considered, respectively, in their discrete forms.
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